Laminar shear stress modulates phosphorylation and localization of RNA polymerase II on the endothelial nitric oxide synthase gene.
نویسندگان
چکیده
OBJECTIVE In endothelial cells exposed to unidirectional laminar shear stress, endothelial nitric oxide synthase transcription (eNOS), mRNA stability, and protein levels are enhanced. We have previously demonstrated that these changes are associated with increased 3' polyadenylation of eNOS mRNA. Here, we investigated the effect of laminar shear stress on the phosphorylation and localization of RNA polymerase (Pol) II, the enzyme primarily responsible for coordinating transcription and posttranscriptional processing. METHODS AND RESULTS Using Western and chromatin immunoprecipitation analyses, Pol II phosphorylation and localization on the eNOS gene were assessed in bovine aortic endothelial cells exposed to laminar shear stress. Total Pol II (phosphorylated and unphosphorylated) levels were increased 65% in response to laminar shear stress. This was associated with an increase in Pol II phosphoserine 2, but no change in levels of the unphosphorylated or phosphoserine 5 isoforms. Quantitative chromatin immunoprecipitation analysis showed that laminar shear stress enhanced binding of Pol II phosphoserine 2 to the 3' end of the eNOS gene, particularly exon 26, which encodes the 3'UTR. Treatment of cells with DRB attenuated laminar shear stress-induced Pol II phosphorylation, eNOS 3' polyadenylation, and eNOS expression. CONCLUSIONS These data suggest that laminar shear stress enhances eNOS mRNA 3' polyadenylation by modulating phosphorylation and localization of Pol II.
منابع مشابه
Laminar shear stress and 3' polyadenylation of eNOS mRNA.
The 3' poly(A) tail is important in messenger RNA stability and translational efficiency. In somatic tissues, 3' polyadenylation of mRNAs has been thought to largely be a constitutively active process. We have reported that laminar shear stress causes a brief increase in endothelial nitric oxide synthase (eNOS) transcription, followed by a prolonged increase in eNOS mRNA stability. We sought to...
متن کاملFlow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an impor...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملLaminar shear stress up-regulates inducible nitric oxide synthase in the endothelium.
Shear stress caused by blood flow is a potent physiological stimulus for the generation of nitric oxide (NO) in endothelial cells, which is believed to derive from the up-regulation and post-transcriptional activation of endothelial constitutive NO synthase (ecNOS). However, it has yet to be demonstrated that inducible NO synthase (iNOS) plays a significant role in shear stress-induced NO produ...
متن کاملRegulation of tetrahydrobiopterin biosynthesis by shear stress.
An essential cofactor for the endothelial NO synthase is tetrahydrobiopterin (H4B). In the present study, we show that in human endothelial cells, laminar shear stress dramatically increases H4B levels and enzymatic activity of GTP cyclohydrolase (GTPCH)-1, the first step of H4B biosynthesis. In contrast, protein levels of GTPCH-1 were not affected by shear. Shear did not change protein express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2010